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We here present the details of the numerical realization of the recently advanced
algorithm developed to identify the fragmentation in heavy ion reactions. This new
algorithm is based on the simulated annealing method and is dubbed thesimulated
annealingclusterizationalgorithm (SACA). We discuss the different parameters used
in the simulated annealing method and present an economical set of the parameters
which is based on the extensive analysis carried out for the central and peripheral
collisions of Au-Au, Nb-Nb, and Pb-Pb. These parameters are crucial for the success
of the algorithm. Our set of optimized parameters gives the same results as the
most conservative choice, but is very fast. We also discuss the nucleon and fragment
exchange processes which are very important for the energy minimization and finally
present the analysis of the reaction dynamics using the new algorithm. This algorithm
can be applied whenever one wants to identify which of a given number of constituents
form bound objects. c© 2000 Academic Press

I. INTRODUCTION

In recent years, much effort has been made (in experiments and theory) at low, interme-
diate, and relativistic energies to understand the physics which drives heavy ion reactions.
A new generation of electronic devices made it possible to measure a multitude of observ-
ables at the same time which can give information about the hot and dense nuclear matter
formed during a reaction [1]. In a heavy ion reaction the density can be as high as 2–4
times the normal nuclear matter and one may reach temperatures of about 100 MeV [2].
The properties of the nuclear matter at high densities are not only of importance for nuclear
physics, but are also of great use for the astrophysical studies, especially for supernova
studies. Unfortunately, there is no method to measure directly the properties of hot and
compressed nuclear matter formed during a reaction [1]. What one can observe are single

1 Permanent address: Physics Department, Panjab University, Chandigarh-160 014, India.

245

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



246 PURI AND AICHELIN

hadrons. Their properties are mostly determined in the late stage of the expansion and it
is quite difficult to find observables sensitive to the early stage. For this one has to rely on
the theoretical (simulation) models. One can simulate the reaction from the start to the end
where we find cold nuclear matter in the form of nucleons and light and heavy fragment [3].
The most important information which one would like to extract from the simulation is the
times scales of different phenomena. One would like to know, for example, when particles
are created, when fragments are formed, whether they carry any information about the hot
and compress phase, etc. The key question associated with the time scale of the fragment
emission is whether it is a thermal or a dynamical process, i.e., whether the fragments
are created after the system has thermalized or can already be recognized early, before a
possible thermalization sets in. This would point to initial–final state correlations [4–7]. In
addition, several conjectures on the equation of state, especially those in which the nuclear
interaction is strongly momentum dependent, could not be tested so far is simulations be-
cause the nuclei become unstable. Here an early fragment recognition would allow us to
study these equations of state.

We shall concentrate here on multifragmentation. All theoretical models used to study
heavy ion collisions are based on the transport of nucleons and mesons only. Therefore, for
the study of multifragmentation a method has to be devised to group the nucleons into free
nucleons and fragments. In the past, one has taken the spatial correlations among nucleons
to group them into fragments [3]. Naturally, this approach cannot detect different fragments
which are (almost) overlapping and therefore will give a single big fragment during the early
stage of the reaction where density is quite high. In other words, simple coordinate space
approaches cannot address the question of the time scale of fragment formation. To study
that one needs a method where fragments can be identified even if they are overlapping,
i.e., methods which are based on phase space.

We conjecture that in nature at any given moment of the reaction that configuration is
realized which gives the largest binding energy. That this concept is meaningful and gives
sensitive results will be demonstrated later. To find the most bound configuration we are
confronted with two problems.

(a) The huge number of possible configurations.
(b) The fact that the number of entities changes. Whereas the number of nucleons is

constant, the number of free nucleons and fragments is a variable. The problem caused by
this fact will be discussed later.

One may approach this problem by simple iterative methods. They, however, do not
guarantee that a global minimum is obtained but may arrive at a local minimum [8]. A
first attempt to overcome this problem has been advanced in Ref. [6]. Though this method
works fine for small systems, its simple numerical implementation poses serious problems
for studying the heavy systems where the number of different configurations increases
tremendously and almost always the algorithm remains stuck in a local minima. To deal with
the more interesting large systems a sophisticated algorithm is needed which can handle the
huge number of different configurations and finds the configuration with maximal binding
energy in a reasonable amount of computational time. In addition, it should be able to
overcome any type of local minima.

We here present the details and technical aspects of such a new algorithm which is based on
the simulated annealing method and is quite general in nature. The question addressed here
requires a numerical approach which is not specific to the problem described. Apart from
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multifragmentation, the energy minimization is needed, for example, in nuclear structure
calculations, in cluster radioactivity, in hadron physics, etc. In nuclear cluster radioactivity,
one is interested in the relative yields of different fragments which are emitted by the
decaying nucleus. There, one assumes the isotopic distribution and the energy minimization
is needed to find the most bound isobaric distribution [9].

Naturally, before one can talk about cluster formation, one first needs the phase space
coordinates of the particles. We here use thequantummoleculardynamics (QMD) model
[3] (as an event generator) to generate the time evolution of the phase space coordinates of
nucleons in a nuclear reaction. First physical results with a simpler algorithm (which lacks
the below mentioned second simulated annealing step in which not nucleons but clusters
are exchanged) have been already published [10]. Both algorithms give different results for
the beginning of the reaction but agree at the time steps where the results are interpreted in
physical terms. Thus the results published in these publication are still valid (as one may
see as well if one compares the numerical values).

Our paper is organized as follows. Section II deals with a short description of the QMD
model and a detailed description of the algorithm. The numerical realization of the algorithm
is presented in Section III and we summarize the results in Section IV.

II. THE FORMALISM

We here summarize shortly thequantummoleculardynamics (QMD) model and then
give the details of our new algorithm designed for multifragmentation. For more details on
the QMD approach, we refer the reader to [3].

(i) The QMD approach. The QMD model is based on molecular dynamics and hence is
an n-body theory which simulates the heavy ion reactions between 30A. MeV to 1A ·GeV
on an event by event basis [11]. Here each nucleus is represented by a coherent state of the
form (h̄= 1)

φα(x1, t) =
(

2

πL

)3/4

e−(x1−xα− pα t
m )

2
/2L ei pα(x1−xα) e−

i p2
α t

2m . (1)

The wave function has two time dependent parametersxα, pα. We fix the Gaussian width
(L) to 2.16 fm3. In QMD calculations, nucleonα moves on a quasi-classical trajectory as
obtained by a variation solution of the n-body Schroedinger equation,

ẋα = pα
m
+∇pα

∑
β

〈Vαβ(xα, xβ, pα, pβ)〉, (2)

ṗα = −∇xα

∑
β

〈Vαβ(xα, xβ, pα, pβ)〉. (3)

Here pα and xα are the centroids of the Gaussian wave functions in momentum and
coordinate space which represent the nucleonα. The potential has the form [3]

〈Vαβ(xα, xβ)〉 =
∫

d3x1 d3x2〈φαφβ |V(x1, x2)|φαφβ〉. (4)
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In addition, the nucleons interact via stochastic elastic and inelastic NN collisions. In
principle, our approach to finding the fragments is independent of the algorithm which
generates the phase space coordinates. Therefore, QMD may be replaced by any other
model (like the simple molecular dynamics model [6], the Boltzmann–Uhling–Uhlenbeck
model, etc. [12] which is able to generate the phase space coordinates of the particles. Due
to its n-body nature, the QMD model is more appropriate to study the fragment formation
in heavy ion collisions than one body models.

(ii) A survey of heavy ion reaction.During the simulation of the reaction, we store the
phase space coordinates of all nucleons at several time steps. As the QMD model simulates
the time evolution of nucleons, the stored phase space distribution is that of nucleons only.
Our basic assumption is that in nature that configuration is realized which gives the largest
binding energy. Therefore, a method has to be adopted to group the nucleons in free nucleons
and fragments. The nucleons within a fragment will be bound by some binding energy. In
a very simple model, one could consider the nucleons being a part of the same fragment if
their centroids are closer than some spatial distancermax. This model is called the minimum
spanning tree (MST) method [3]. One generally takes 2≤ rmax≤ 4. By definition, this
method cannot address the fragment distribution during the violent phase of the reaction
where whole nuclear matter is compressed and is confined to a few fermis. The MST method
at this time will give one single large fragment. More disturbing, the fragments detected by
the MST method can contain nucleons with very large relative momenta. These fragments
will be unstable and will decay after a while by fissioning or by emitting nucleons. To
improve the model, a cut in momentum space has been also suggested recently by one of
us and collaborators [7]. This cut (which limits the maximal allowed relative momentum
of two nucleons in the same fragment) is quite effective in central collisions where most of
the fragments are created during a reaction, but has no effect on the fragment distribution
in peripheral collisions where the fragments are produced due to the decay of the spectator
matter.

If one combines the cuts in momentum and in coordinate space to a binding energy cut,
one sees that several groups of nucleons are indeed not fragments, but a group of unbound
nucleons which are close in spatial space. One has to follow the reaction for a long time
until this group of nucleons decays in light and heavy fragments which are well separated
in the coordinate space and can be detected with the standard MST algorithm. The critical
time is generally assumed to be about 300 fm/c.

To give the reader a clearer picture, we simulated the reaction Au-Au at 600 MeV/nucl.
and at impact parameters of b= 3 and 8 fm, respectively, and display some key quantities
in Fig. 1. The solid and dotted lines represent the reaction at 8 and 3 fm, respectively. The
first row shows the evolution of mean density and of the collisions as a function of time. As
expected, a higher density and collision number can be seen in central collisions compared
to peripheral collisions. One also notices that the high reaction rate terminates at about
40–60 fm/c. Afterwards, we observe only collisions of nucleons in the same fragment. The
second row shows the evolution of spectator (filled circle) and participant (filled triangle)
nucleons. A participant nucleon is defined as a nucleon which has undergone at least one
collision. One sees that in central collisions 99% of nucleons have experienced a collision
until 40 fm/c. As a result the directed transverse flow saturates as early as 40–60 fm/c.
Figure 1e displays the evolution of the size of the largest fragmentAmax detected by the
normal MST method withrmax= 4 fm. We see one big fragment (consisting of 394 nucleons)
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FIG. 1. Evolution of Au-Au collisons at incident energy of 600 MeV/ nucl. using a soft equation of state.
The results atb= 3 and 8 fm are displayed, respectively, by dotted and solid lines. (a) The mean density and
(b) the rate of collision. (c) The evolution of the spectators (filled circle) and the participants (filled triangle).
(d) The time evolution of the transverse flow of the nucleons. Here, we do not consider the formation of fragments.
The evolutions of the largest massAmax formed within MST and MST with binding energy check (MST∗) are
displayed in (e) and (f), respectively.

at the time when the density is high. After about 120 fm/c we are able to find the “stable”
fragment, which still decreases in size due to evaporation. Is this realistic identification
of the largest fragment? To answer this question, we applied a binding energy cut on the
fragments detected in the MST method. We first analyze the fragments with the MST
method and then pass all the fragments (with mass≥3) through an energy filter which
recognizes a fragment only if it has at least a binding energy of 4 MeV/nucl. Otherwise it
considers the MST fragment as a set of free nucleons. This approach is labeled as MST∗. In
both central and peripheral collisions, the largest fragment detected in MST is not a bound
fragment at intermediate times. One gets properly bound fragments after about 120 fm/c
when the emission of nucleons has lowered the binding energy. One should keep in mind
that in peripheral collisions, one has two big (spectator) fragments and a fireball at the
mid-rapidity region without a fragment.

(iii) Simulated annealing clusterization algorithm (SACA).Our new approach can be
summarized as follows. We assume that:

(1) The nucleons from target and projectile are grouped into fragments (of any size)
and into free nucleons.
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(2) Though the nucleons inside a fragment can interact with each other, they do not
interact with the nucleons from other fragments or free nucleons.

(3) That pattern of nucleons and fragments is realized in nature which gives the highest
binding energy.

To avoid that at intermediate times too many fragments are assumed (which finally break
apart), we employ in addition a binding energy check. In order to form a fragment, the
considered group of nucleons has to have a minimal binding energy given by

ζ =
N f∑
α=1

√(pα − Pcm
N f

)2+m2
α −mα + 1

2

N f∑
β 6=α

Vαβ(xα, xβ)

< Lbe× N f , (5)

with Lbe=−4.0 MeV if N f ≥ 3 andLbe= 0 otherwise. In this equation,N f is the number
of nucleons in a fragment andPcm

N f is the center-of-mass momentum of the fragment. At
the beginning of the reaction the phase space is very densely populated and the algorithm
is not very effective to find the most bound configuration because of the formation of very
loosely bound fragments. Once such a loosely bound fragment is formed it takes a very
long time until it disintegrates into a more bound configuration. To avoid being stuck in a
local minimum a binding energy criteria is very effective. In addition we made sure that
these loosely bound fragments never develop into real fragments by checking the future of
the nucleons they contain. After the violent phase of the reaction, after 60 fm/c, the bind-
ing energy criteria do not play a role anymore because there all fragments have a binding
energy which is larger. The problem is that we have to find the most bound configura-
tion among a huge number of possible patterns (composed of nucleons and fragments).
In order to cope with this complicated problem, we employ the simulated annealing tech-
nique and hence this algorithm is dubbed the “simulated annealing clusterization algorithm
(SACA).”

One is tempted to start the search for the most bound cluster configuration by an iterative
minimization method (also known as neighborhood search or local search). In this method,
starting from a given configuration a new one is constructed. The new configuration is
accepted only if it lowers the binding energy. The drawback of this procedure is that it
may terminate at a local minimum. To improve this limitation, several modifications can be
imagined [13]:

1. To execute the algorithm for a large number of the initial configurations. This will
finally allow us to reach the global minimum. This is very time consuming.

2. To use a algorithm which can jump over local minima and hence one can reach the
global minima. This clearly depends strongly on the problem. Therefore its applications are
limited.

3. To generalize the iterative method so that the transitions which yields a higher
binding energy are always accepted. In addition, the transitions which yield a lower binding
energy are also accepted with a certain probability. This algorithm is known as the simulated
annealing method [13]. Its name is based on the fact that this algorithm is akin to the one
used for cooling the solids. The simulated annealing method is a sequence of Metropolis
algorithms [14] with decreasing control parameterϑ . The control parameterϑ can be
interpreted as a “temperature.” For each Metropolis algorithm at a given temperature, we
perform a sequence of steps until the binding energy does not change anymore. Each step
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is executed as follows:

1. Given some initialψ with energyζψ , a new configurationϕ with energyζϕ is
generated in the neighborhood ofψ using a Monte Carlo procedure.

2. Let the energy difference betweenψ andϕ be1ζ = ζϕ − ζψ .
3. If 1ζ is negative, the new configuration is always accepted. If1ζ is positive,

it is accepted with a probability exp(−1ζ/ϑ). At the start, the control parameterϑ is
taken to be large enough so that most all attempted transitions are accepted. This is to
overcome any kind of the local minima. After the binding energy remains constant, a
gradual decrease in the control parameterϑ is made and the Metropolis algorithm is re-
peated.

Note that there is no change in the coordinates of the nucleons. One should also note that
this method guarantees that in the limit of infinite steps the global minimum is reached.
Evidence that one reaches the ground state can be provided by obtaining the same fragment
pattern for different starting configurations.

To start with, a random configurationψ (which consists of fragments and free nucleons)
is chosen. The total energy associated withψ configuration is given by

ζψ =
N f

1∑
α=1


√(

pα − Pcm
N f

1

)2
+m2

α −mα + 1

2

N f
1∑

β 6=α
Vαβ(xα, xβ)


1

+ · · ·
N f
ν∑

α=1


√(

pα − Pcm
N f
ν

)2
+m2

α −mα + 1

2

N f
ν∑

β 6=α
Vαβ(xα, xβ)


ν

+
N f
µ∑

α=1


√(

pα − Pcm
N f
µ

)2
+m2

α −mα + 1

2

N f
µ∑

β 6=α
Vαβ(xα, xβ)


µ

+ · · ·
N f

n∑
α=1


√(

pα − Pcm
N f

n

)2
+m2

α −mα + 1

2

N f
n∑

β 6=α
Vαβ(xα, xβ)


n

.

HereN f
µ is the number of nucleons in a fragmentµ, Pcm

N f
µ

is the center of mass momentum

of the fragmentµ, andVαβ(xα, xβ) is the interaction energy between nucleonsα andβ in a
given fragmentµ. Note that the total energy is the sum of the energies of individual fragments
in their respective center of mass system. Therefore,ζψ differs from the (conserved) total
energy of the system because (i) the kinetic energies of fragments are calculated in their
center of masses and (ii) the interactions between fragments/free nucleons are neglected.
At present a simple static interaction is implemented, but one can use the algorithm for
arbitrary interactions.

A new configuration is generated using the Monte Carlo procedure by either (a) trans-
ferring a nucleon from some randomly chosen fragment to another fragment, (b) setting a
nucleon of a fragment free, or (c) absorbing a free nucleon into a fragment. The probability
to come from the old to the new configuration equals the probability to come from the
new to the old one. Hence micro reversibility is guaranteed. Let the new configurationϕ

be generated by transferring a nucleon from fragmentν to fragmentµ. Then the energy of
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new configurationϕ is given by

ζϕ =
N f

1∑
α=1


√(

pα − Pcm
N f

1

)2
+m2

α −mα + 1

2

N f
1∑

β 6=α
Vαβ(xα, xβ)


1

+ · · ·
N f
ν −1∑
α=1


√(

pα − Pcm
N f
ν −1

)2
+m2

α −mα + 1

2

N f
ν −1∑
β 6=α

Vαβ(xα, xβ)


ν

+
N f
µ+1∑
α=1


√(

pα − Pcm
N f
µ+1

)2
+m2

α −mα + 1

2

N f
µ+1∑
β 6=α

Vαβ(xα, xβ)


µ

+ · · ·
N f

n∑
α=1


√(

pα − Pcm
N f

n

)2
+m2

α −mα + 1

2

N f
n∑

β 6=α
Vαβ(xα, xβ)


n

.

Note that in this procedure, the individual energies of all fragments except for the donar
fragment(ν) and the receptor fragment(µ) remain the same. The change in the energy
fromψ → ϕ is given by

1ζ = ζϕ − ζψ . (6)

Between the Metropolis algorithms, we cool the system by decreasing the control param-
eterϑ . A decrease in the temperature means that we narrow the energy difference which
is accepted in a Metropolis step. After many Metropolis steps, we should arrive at a mini-
mum, i.e., the most bound configuration. The problem is, however, that we usually arrive
at a local minimum only. Between the local minimum, we find huge maxima. Let us give
an example. Assume we have two fragments, but the most bound configuration would be
one single fragment which combines both. Now each exchange of a single nucleon raises
the binding energy and only the exchange of all nucleons at the same time lowers the total
binding energy. This effect is well known in chemistry, where it is called activation energy.
In order to avoid being stuck in a local minimum, we add, therefore, a second simulated
annealing algorithm. At the end of the first algorithm we are left with free nucleons and
fragments. These are the entities which are transfered in the second algorithm. This means
that the nucleons which are in a given fragment at the end of the first algorithm remain
together. The fragments and single free nucleons can get combined in all different ways
but a fragment cannot be disintegrated into the constituents it had at the end of the first
algorithm. This second stage of minimization is called the fragment exchange procedure.
It is capable of overcoming any local minimum.

The total energy associated with any configuration9 during the second stage of iterations
is given by

ζ9 =


NS1∑
α=1

√(pα − Pcm
NS1

)2
+m2

α −mα + 1

2

NS1∑
β 6=α

Vαβ(xα, xβ)


1

+ · · ·


NSν∑
α=1

√(pα − Pcm
NSν

)2
+m2

α −mα + 1

2

NSν∑
β 6=α

Vαβ(xα, xβ)


ν
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+


NSµ∑
α=1

√(pα − Pcm
NSµ

)2
+m2

α −mα + 1

2

NSµ∑
β 6=α

Vαβ(xα, xβ)


µ

+ · · ·


NSn∑
α=1

√(pα − Pcm
NSn

)2
+m2

α −mα + 1

2

NSn∑
β 6=α

Vαβ(xα, xβ)


n

.

HereNSµ =
∑N f

Sµ

i=1 Ni
Sµ is the number of nucleons in a super-fragmentSµ, Ni

Sµ is the number
of nucleons in thei th fragment contained in the super-fragmentSµ, andN f

Sµ is the number of
pre-fragments contained in the super-fragmentSµ. ThePcm

NSµ
is the center of mass momentum

of the super fragmentSµ andVαβ(xα, xβ) is the interaction energy between nucleonsα and
β in a given super-fragment. Note that now the particleα interacts with its fellow nucleons
in the same pre-fragment and also with the nucleons of other pre-fragments which are
contained in a new given super-fragmentSµ.

Now the new configuration is generated using a Monte Carlo procedure by either

(a) transferring a pre-fragment from some randomly chosen super-fragment to another
super-fragment or by

(b) setting a pre-fragment free or (c) absorbing a single isolated pre-fragment into a
super-fragment. Let us suppose that a new configuration8 is generated by transferring a
pre-fragment i (with massNi

Sν ) from super-fragmentν to super-fragmentµ. The associated
energy of new configuration8 reads

ζ8 =


NS1∑
α=1

√(pα − Pcm
NS1

)2
+m2

α −mα + 1

2

NS1∑
β 6=α

Vαβ(xα, xβ)


1

+ · · ·


NSν−Ni
Sν∑

α=1

√(pα − Pcm
NSν−Ni

Sν

)2
+m2

α −mα + 1

2

NSν−Ni
Sν∑

β 6=α
Vαβ(xα, xβ)


ν

+


NSµ+Ni
Sν∑

α=1

√(pα − Pcm
NSµ+Ni

Sν

)2
+m2

α −mα + 1

2

NSµ+Ni
Sν∑

β 6=α
Vαβ(xα, xβ)


µ

+ · · ·


NSn∑
α=1

√(pα − Pcm
NSn

)2
+m2

α −mα + 1

2

NSn∑
β 6=α

Vαβ(xα, xβ)


n

.

The only difference between the particle and the fragment exchange procedure occurs for
the bound nucleons. Now the bound nucleons cannot change their identity either by being
absorbed or by becoming free. They will remain bound in a pre-fragment. The pre-fragment
itself can change its identity by either getting transferred to a new super-fragment, or being
set free. As in the first stage, we calculate the energy difference between the new and the
old configurations1ζ and the Metropolis procedure is continued until the most favored
configuration is obtained.

In summary, the actual procedure is as follows. We first simulate the nucleus–nucleus
collision using the QMD model and store the phase-space coordinates of all nucleons at
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several time steps. At each stored time step, we apply the SACA to find the most bound
configuration which consists of nucleons and fragments (of any size). For a faster con-
vergence of the algorithm, any cluster decomposition irrespective of whether it fulfills
the binding energy check (Eq. (5)) or not is considered. Therefore, it is likely that sev-
eral clusters may fail to fulfil Eq. (5). At the end of the algorithm when the most bound
configuration is found, we check the binding energy (Eq. (5)) of each super-fragment ex-
plicitly and mark all super-fragments violating this condition. The nucleons belonging to
an ‘inhibited’ (marked) cluster are further on treated as free nucleons. The minimizing
procedure of the simulated annealing mechanism is invoked again until a configuration is
found where all fragments fulfill Eq. (5). The heavy fragments are usually more bound than
the lighter ones. We have carried out a detailed analysis and found that it is always the light
fragments (with masses 3 or 4) which at the end of the iterations are unbound or loosely
bound.

In the following, we discuss the numerical realization of the algorithm and present a
detailed analysis of the influence of different parameters used in the simulated annealing
method.

III. NUMERICAL REALIZATION

The simulated annealing algorithm has several parameters to be determined: the initial and
the final value of the control parameterϑ , the number of Metropolis steps to be executed at
a given value of control parameter (i.e., length of Markov chain), the decrease of the control
parameter, and the termination of the algorithm. This set of parameters is also referred to as
the cooling schedule in the literature [13]. One needs to choose the following parameters
explicitly:

1. The initial value of the control parameterϑi . This will be referred to as temperature.
2. The final value of the control parameterϑ f (i.e., the termination procedure).
3. The length of the Markov chainMch.
4. A rule to fix the decrement in the control parameterσ .

Following [13], we use a so-called simple cooling scheme and present the analysis of our
extensive tests made for the collisions of Au-Au at 600 MeV/nucl. and at an impact parameter
of 8 fm. We have also analyzed the results for the collisions of Pb-Pb (central) and Nb-Nb
(central and peripheral). The results of our analysis are independent of the masses of the
colliding nuclei and also of the impact parameter. For our analysis we choose a conservative
set of the above parameters and then try to find an optimized set of the parameters which
yields the shortest computational time. We use the following set of parameters if not stated
otherwise.

The initial temperatureϑi is taken to be 4 MeV. The length of the Markov chain is taken
to be 70η, η being the number of entities at the start of the minimization. After each Markov
chain (=70η), the temperature is decreased using a simple law,

ϑi+1 = σ · ϑi ,

with σ = 0.95. Finally, the algorithm is terminated if there is no change in the binding
energy for a large number of iterations (=60η). The details of each of these parameters will
be presented the following paragraphs.
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FIG. 2. The heaviest fragmentAmax, the emitted nucleons, the multiplicity of fragments with mass A≥ 5, and
the total energy associated with the configuration are displayed as a function of the cell number. Here the results
at 0, 40, and 200 fm/c are represented, respectively, by filled circle, open square, and filled triangle. The displayed
results are for a single event generated using the QMD model.

(i) The initial configuration. We have to choose a random initial distribution to evoke
the simulated annealing minimization. In our procedure, we distribute the nucleons (of the
two colliding nuclei) into a few cells. The transfer of nucleons is allowed among these
cells. Naturally, the final outcome should be independent of the number of cells we choose.
In Fig. 2, we present the outcome of a single QMD event when exposed to SACA with a
different number of initial cells. The displayed reaction is of Au-Au at 600 MeV/nucl. and
impact parameter of 8 fm. Here we vary the number of cells between 2 and 394 (that is, by
treating each nucleon as a free particle). We see that the variation in the cell number does
not affect the final fragment distribution. At 0 fm/c, the simulated annealing method finds
2 nuclei (i.e., the projectile and target) which shows the validity of the annealing method.
One also notices that the binding energy of the system remains constant between 40 and
200 fm/c. In other words, the most bound configuration found in SACA at 40 and 200 fm/c
is approximately the same.

In Fig. 3, we display the evolution of most bound configuration using the two extremes:
2 cells and all particles free at 0, 40, 120, and 200 fm/c, respectively. Note that the high
density phase is reached around 40 fm/c. Between 120 and 200 fm/c, one should not expect
much change as the reaction is already finished and there is only some rearrangement of the
nucleons in the fragments. In case of 2 cells (2 initial clusters) the algorithm first breaks each
of the clusters into large number of free nucleons (because free nucleons have zero energy)
and some light fragments. After several hundred-thousand iterations, it starts rearranging
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FIG. 3. The evolution of the most bound configuration as a function of the iterations. Here we display the
results at four times, i.e., at 0, 40, 120, and 200 fm/c, respectively. The solid and dotted lines represent the results
obtained with cells= 2 and 394, respectively.

the nucleons into bound fragments. It is interesting to note that after some initial differences,
the evolution of most bound configuration is quite the same in both cases.

As stated in the algorithm section, we choose the new configuration (ϕ or8) by transfer-
ring a nucleon/pre-fragment from one fragment/super-fragment to another. These fragments
are chosen by the Monte Carlo method. It would be interesting to study the effect of differ-
ent Monte Carlo procedures (applied in SACA) on the fragment distribution. The different
Monte Carlo procedures can be generated using different random numbers. In Fig. 4, we dis-
play the fragment distribution (i.e., the largest fragmentAmax, the number of free nucleons
and of intermediate mass fragments IMFsA≥ 5) and the energy of the most bound con-
figuration at three different times, i.e., at 0, 40, and 200 fm/c, respectively, for the different
iterations. We see, as it should be, an almost complete independence.

(ii) The initial valueϑi . One of the key features of the Metropolis algorithm is that it
also accepts the transitions which increase the cost function, i.e., the energy. Therefore, the
initial valueϑi should be such that most of the attempted transitions are accepted during first
iterations. In other words, exp(−1̄ζ/ϑi )∼ 1. A practical way to implement the sequence
of ϑi ’s is given by Johnsonet al. [15]. There the average increase in the energy over large
number of iterations1̄ζ is related withϑi by

acceptance ratio χ = exp{−1̄ζ/ϑi }, (7)
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FIG. 4. Same as Fig. 2, but as a function of Monte Carlo procedures.

i.e.,

ϑi = 1̄ζ

ln(χ−1)
. (8)

Generally, the acceptance ratioχ should be close to 1. The choice of the valueϑi (or the
temperature) depends very strongly on the problem at hand. It should be kept in mind that
a very large value ofϑi will lead to huge computational time whereas a very small value
will lead to less attempts which are accepted by the Metropolis algorithm and consequently
which may lead to a wrong final distribution. In Fig. 5, we show the same reaction as reported
in Figs. 1–4, but at different values of initial temperatureϑi . Here the other parameters are
kept unchanged. The variation ofϑi between 1 and 500 MeV has no effect on the fragment
distribution at 0 fm/c. We have just two gold nuclei initially. On the contrary, one can see
some differences at 40 fm/c. A very small value ofϑi (≤3–4 MeV) leads to a heavierAmax

(95) compared to the averageAmax(≈42) and as a result fewer IMFs and nucleons are
emitted. Similar conclusions can be drawn at 200 fm/c. A very low value ofϑi apparently
freezes the initial configuration. The results are more stable forϑi ≥ 3 MeV. Therefore, we
chooseϑi = 5 MeV.

In Fig. 6, we display the evolution of the most bound configuration in the Au-Au reactions
using ϑi = 5 MeV and 500 MeV. We see that when one iterates the reaction with very
large initial temperature (=500 MeV), almost all attempted transitions are accepted in the
Metropolis algorithm. With a moderate value of the temperatureϑi = 5 MeV, only some
selected configurations are accepted. The minimization of the energy withϑi = 500 MeV
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FIG. 5. Same as Fig. 4, but as a function of the initial temperatureϑi . Here the arrow shows the value of the
parameter chosen for the optimized set of parameters.

FIG. 6. Same as Fig. 3, but with temperatureϑi = 5 MeV (Solid line) and 500 MeV (dotted line), respectively.
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FIG. 7. Same as Fig. 5, but as a function of the length of the Markov chainMch.

results in the vibration around the same fragments for very long time. An (unnecessary)
large value ofϑi does not help to establish an early equilibrium. On the contrary, one needs
huge computation time (in terms of iterations) to find the most bound configuration. The
same can be achieved with moderate value ofϑi = 5 MeV with far less costs.

(iii) The length of the Markov chain, Mch. Here we fix the control parameterϑ and
execute the algorithm for a fixed number of Metropolis steps. We construct a sequence of
fragment configurations Q={ψ, ϕ,9, . . . , 8}. One should note that here we have an initial
configurationψ and the new configurationϕ(=ψ + 1) is generated by a random matrix.
Thus, the number of iterations, and hence the length of Markov chain, should be long enough
to ensure an equilibrium. In Fig. 7, we show the results with Markov chains of different
length. The length of the Markov chainη is displayed in the units of the total number of the
nucleons (pre-fragments) present at the beginning of the minimization. After about 40η the
results are quite stable. For smaller values ofη, there are fluctuations in the results and, in
addition, SACA overestimates the size of Amax and underestimates consequently the IMF
production. We fix the length of the Markov chain atη= 40. The effect of different Mch’s on
the evolution of the most bound configuration is shown in Fig. 8 where the evolution of the
fragment’s multiplicity is plotted as a function of the iterations for two values of Markov’s
chains, i.e., forMch= 40η and 450η, respectively. Note that the number of iterations equals
η times the number of temperature steps. We see that the initial evolution is quite the same in
both cases, but a smaller value ofMch needs less iterations than a longer one to arrive at the
same final value. This is easy to understand. The main aim of iterating over a large number
of iterations with the sameϑ is to establish the quasi-equilibrium. Once an equilibrium is
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FIG. 8. Same as Fig. 3, but withMch= 40η and 450η, respectively.

established, there will be no further improvements at the sameϑ ; therefore, a smaller value
of Mch leads to the same result as that with the largestMch.

(iv) Decrement in the control parameter.The minimization is started with a relatively
large temperatureϑi . Then the temperature is decreased in steps after a quasi-equilibrium
is established for each temperature. Apparently, a larger decrement in the temperature will
lead the defect to be frozen, i.e., any configuration which may or may not be the most
bound can freeze, whereas a very small decrement will need huge computational time. The
decrement should be in such a way that the length of the Markov chainMch is as small as
possible and thus, after a new change of control parameterϑ , the quasi-equilibrium should be
re-established as soon as possible. We here follow the simple rule for the decrement factorσ ,

ϑi+1 = σ · ϑi . (9)

The value ofσ varies in the literature between 0.5 and 0.95 [13, 15–17]. The effect of
different decrement factorsσ is displayed in Fig. 9. Here all other parameters are kept the
same as discussed at the beginning. One can see that a very small value ofσ overestimates
the size ofAmax and underestimates the IMF production. We fix the value ofσ to 0.85. The
comparison of two simulations resulting from the decrement factorσ = 0.85 and 0.89 is
displayed in Fig. 10. Here we see that the two different values give the same cooling result
but for the larger value ofσ many more iterations are necessary.

(v) The final valueϑ f . The termination procedure used in the literature varies from
problem to problem and also from author to author. We fix the termination by two different
controls.
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FIG. 9. Same as Fig. 5, but as a function of the decrement factorσ .

FIG. 10. Same as Fig. 3, but withσ = 0.85 and 0.98, respectively.
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FIG. 11. Same as Fig. 5, but as a function of termination lengthl term.

1. Either we stop the calculations if the control parameterϑ has reached a very small
value where no further transition can be expected. For the present calculation, we take
ϑ f= 10−10 MeV.

2. Or we terminate the algorithm if there is no change in the configuration over a large
number of attempted iterations. Following the rule used to fix the length of the Markov
chain, we choose the length for terminationl term in terms ofη which represents the number
of iterations in the units ofMch. In Fig. 11, we display the effect of the variation inl term on
the fragment distribution. We find that different termination lengths do not affect the results.
The effect of thel term on the evolution of the most bound configurations is shown in Fig. 12
where the evolution as a function of iterations is displayed for two values ofl term, i.e., for
l term= 5η and 120η, respectively. The different termination values have a very small effect
on the fragment structure. Therefore, we fixl term to 35η.

In the above paragraphs, we have discussed in detail the influence of different choices of
the parameters which determine the simulated annealing method. One should note that once
these parameters are chosen, the simulated annealing method is completely determined and
it is a complete self-iterative method.

In further discussion, the set with conservative parameters (i.e., withϑi = 500 MeV,
Mch= 450η, σ = 0.98 andl term= 120η) is called Sl whereas the set with the most econom-
ical parameters (i.e., withϑi = 5 MeV, Mch= 40η, σ = 0.85 andl term= 35η) is called Sec.

The crucial test of the algorithm is its application to a single nucleus in its ground state. In
principle one should get a single nucleus at the end. For small nuclei (up to mass 50 amu) the
algorithm finds always the ground state. For heavier nuclei the result is different. Usually
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FIG. 12. Same as Fig. 3, but withl term= 35η and 120η.

the algorithm gets stuck in a local minimum which consists of a few heavy fragments and
a few single nucleons. The algorithm does not find the global minimum, which is of course
the single nucleus because it is separated from the local minimum by a large potential
barrier. This situation is similar to chemical reactions which need an activation energy. The
probability of surmounting that barrier is very small but finite and hence the system will
finally find its way to the true ground state but this will take much too long.

Therefore we add a second stage to the algorithm in which nucleons are transferred
collectively. We consider the nucleons and fragments we obtain at the end of first stage as
those entities which can be transferred. By this fragments exchange procedure we could
overcome the local minima and we find a single nucleus as the most bound configuration. In
Fig. 13, we show the evolution of the fragments as a function of the iterations for different
single nuclei20Ne, 40Ca, 93Nb, and208Pb, respectively, using Sec. Starting points are the
(ground) state nuclei as generated by the QMD. In all cases, the SACA finds the single
nucleus at the end of the iterations as it should. One also notices that the lighter nuclei need
less iterations to find the most bound configuration. We find≈8,000, 12,000, 62,000, and
280,000 iterations are necessary to find the ground state for20Ne, 40Ca,93Nb, and208Pb,
respectively. One also notices that the increase in the number of necessary iterations is not
a linear function of the masses of nuclei. The energy of the configurations is displayed
in Fig. 14. We notice that one has a positive energy at the beginning which is decreased
by breaking the cells into a large number of nucleons/fragments. After a large number of
iterations, one finally reaches the most bound configuration.

In Fig. 15, we display the multiplicity (averaged over 20 events) of different fragments
obtained usingSl andSce, respectively. Here the Au-Au collision is carried out at impact
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FIG. 13. Same as Fig. 3, but the evolution of single nuclei Ne, Ca, Nb, and Pb, respectively.

FIG. 14. Same as Fig. 13, but the energy of the system as a function of the iterations.
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FIG. 15. The time evolution of the Au-Au system at 600 MeV/nucl. and at an impact parameter of 8 fm using
a soft equation of the state. Here we display the results which are averaged over 20 events. The results obtained
usingSl andSec are shown by the filled circles and open squares, respectively.

parameter of 8 fm. We see that both sets of parameters give a similar evolution of the
reaction. One should note that the minimization withSec needs much less computing time
as compared toSl . Our algorithm is able to detect the fragment distribution as early as 50–60
fm/c. From Fig. 1, one notices that the density is maximum at this time. This very early
identification of fragments in SACA is very promising because it means that the fragments
may give insight into hot and dense nuclear matter.

The annealing algorithm can be made faster if some pre-information is fed into the
algorithm. Naturally, the nucleons which are very far away in spatial or in momentum space
will not lower the energy if one combines them as a fragment. We applied a cut in spatial and
in momentum space to sort out those distant nucleons. We took a minimal spatial distance
between two nucleons of 10 fm and a relative momentum of 200 MeV/c. In other words,
we first break the whole system into fragments using these conditions and each of these
fragments are then subjected to SACA. We found that the results are the same as before but
the algorithm is about 10 times faster.

IV. SUMMARY

Summarizing, based on the simulated annealing method, we have presented the details
of a new algorithm developed to study multifragmentation of heavy ion collisions. We
have carried out an extensive survey of the different parameters which are crucial for
the success of the method. Based on our calculations, a set of parameters is suggested for
the algorithm which makes the algorithm very fast and accurate. This algorithm can detect
the fragments as early as 40–60 fm/c, i.e., at a time when the density is relatively high and
the interactions between fragments are still going on. This allows us to study the process
of fragment formation in detail. As seen, the fragment distribution is by far not the same at
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this early time as compared to 200–1000 fm/c. But there are strong correlations between
the fragment patterns at both times. Detailed investigations have shown that between 60 and
200 fm/c small fragments recombine to a large one thus lowering the fragment multiplicity.
A first physical interpretation of this observation was given [10]. A systematic study of the
fragment production as a function of beam energy and impact parameter will be presented
elsewhere [20]. Furthermore this algorithm makes it possible to apply the full in-medium
G-matrix approach [18] to study the multifragmentation which was not possible due to the
emission of nucleons after 70–80 fm/c [19]. The algorithm is very general and may serve
for every problem in which the most bound configuration has to be found.
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