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We here present the details of the numerical realization of the recently advanced
algorithm developed to identify the fragmentation in heavy ion reactions. This new
algorithm is based on the simulated annealing method and is dubbsidnilated
annealingclusterizatioralgorithm (SACA). We discuss the different parameters used
in the simulated annealing method and present an economical set of the parameters
which is based on the extensive analysis carried out for the central and peripheral
collisions of Au-Au, Nb-Nb, and Pb-Pb. These parameters are crucial for the success
of the algorithm. Our set of optimized parameters gives the same results as the
most conservative choice, but is very fast. We also discuss the nucleon and fragment
exchange processes which are very important for the energy minimization and finally
present the analysis of the reaction dynamics using the new algorithm. This algorithm
can be applied whenever one wants to identify which of a given number of constituents
form bound objects. © 2000 Academic Press

I. INTRODUCTION

In recent years, much effort has been made (in experiments and theory) at low, intel
diate, and relativistic energies to understand the physics which drives heavy ion react
A new generation of electronic devices made it possible to measure a multitude of obs
ables at the same time which can give information about the hot and dense nuclear v
formed during a reaction [1]. In a heavy ion reaction the density can be as high as
times the normal nuclear matter and one may reach temperatures of about 100 Me\
The properties of the nuclear matter at high densities are not only of importance for nuc
physics, but are also of great use for the astrophysical studies, especially for super
studies. Unfortunately, there is no method to measure directly the properties of hot
compressed nuclear matter formed during a reaction [1]. What one can observe are s
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hadrons. Their properties are mostly determined in the late stage of the expansion a
is quite difficult to find observables sensitive to the early stage. For this one has to rely
the theoretical (simulation) models. One can simulate the reaction from the start to the
where we find cold nuclear matter in the form of nucleons and light and heavy fragment
The most important information which one would like to extract from the simulation is t
times scales of different phenomena. One would like to know, for example, when partic
are created, when fragments are formed, whether they carry any information about the
and compress phase, etc. The key question associated with the time scale of the frac
emission is whether it is a thermal or a dynamical process, i.e., whether the fragm
are created after the system has thermalized or can already be recognized early, be
possible thermalization sets in. This would point to initial—final state correlations [4—7].
addition, several conjectures on the equation of state, especially those in which the nu
interaction is strongly momentum dependent, could not be tested so far is simulations
cause the nuclei become unstable. Here an early fragment recognition would allow L
study these equations of state.

We shall concentrate here on multifragmentation. All theoretical models used to st
heavy ion collisions are based on the transport of nucleons and mesons only. Therefor:
the study of multifragmentation a method has to be devised to group the nucleons into
nucleons and fragments. In the past, one has taken the spatial correlations among nuc
to group them into fragments [3]. Naturally, this approach cannot detect different fragme
which are (almost) overlapping and therefore will give a single big fragment during the ec
stage of the reaction where density is quite high. In other words, simple coordinate sy
approaches cannot address the question of the time scale of fragment formation. To ¢
that one needs a method where fragments can be identified even if they are overlap
i.e., methods which are based on phase space.

We conjecture that in nature at any given moment of the reaction that configuratio
realized which gives the largest binding energy. That this concept is meaningful and g
sensitive results will be demonstrated later. To find the most bound configuration we
confronted with two problems.

(a) The huge number of possible configurations.

(b) The fact that the number of entities changes. Whereas the number of nucleol
constant, the number of free nucleons and fragments is a variable. The problem caust
this fact will be discussed later.

One may approach this problem by simple iterative methods. They, however, do
guarantee that a global minimum is obtained but may arrive at a local minimum [8].
first attempt to overcome this problem has been advanced in Ref. [6]. Though this me
works fine for small systems, its simple numerical implementation poses serious probl
for studying the heavy systems where the number of different configurations incree
tremendously and almost always the algorithm remains stuck in alocal minima. To deal\
the more interesting large systems a sophisticated algorithm is needed which can hand
huge number of different configurations and finds the configuration with maximal bindi
energy in a reasonable amount of computational time. In addition, it should be able
overcome any type of local minima.

We here presentthe details and technical aspects of such a new algorithm which is bas
the simulated annealing method and is quite general in nature. The question addresse
requires a numerical approach which is not specific to the problem described. Apart fi
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multifragmentation, the energy minimization is needed, for example, in nuclear struct
calculations, in cluster radioactivity, in hadron physics, etc. In nuclear cluster radioactiv
one is interested in the relative yields of different fragments which are emitted by
decaying nucleus. There, one assumes the isotopic distribution and the energy minimiz
is needed to find the most bound isobaric distribution [9].

Naturally, before one can talk about cluster formation, one first needs the phase s
coordinates of the particles. We here useghantummoleculardynamics (QMD) model
[3] (as an event generator) to generate the time evolution of the phase space coordina
nucleons in a nuclear reaction. First physical results with a simpler algorithm (which la
the below mentioned second simulated annealing step in which not nucleons but clu
are exchanged) have been already published [10]. Both algorithms give different result
the beginning of the reaction but agree at the time steps where the results are interpre
physical terms. Thus the results published in these publication are still valid (as one |
see as well if one compares the numerical values).

Our paper is organized as follows. Section Il deals with a short description of the QI
model and a detailed description of the algorithm. The numerical realization of the algorif
is presented in Section Il and we summarize the results in Section IV.

Il. THE FORMALISM

We here summarize shortly tlggiantummoleculardynamics (QMD) model and then
give the details of our new algorithm designed for multifragmentation. For more details
the QMD approach, we refer the reader to [3].

(i) The QMD approach. The QMD model is based on molecular dynamics and hence
an n-body theory which simulates the heavy ion reactions betwenN8V to 1A - GeV
on an event by event basis [11]. Here each nucleus is represented by a coherent state
form(h=1)

2\ ¥4 ot 2 . ip2t
bo (X1, 1) = (H) e_(xl_xu_p?[) /2L &l Pa (X1 —Xe) e—z—m‘ (1)

The wave function has two time dependent parametgrp, . We fix the Gaussian width
(L) to 2.16 fn?. In QMD calculations, nucleoa moves on a quasi-classical trajectory as
obtained by a variation solution of the n-body Schroedinger equation,

. _ P
Xog = m +Vpa§(vaﬂ(xaaxﬂvapﬁ))’ )
Pa = —Vx, > (Vas e X, Pas Pp)).- (3)

B

Here p, andx, are the centroids of the Gaussian wave functions in momentum &
coordinate space which represent the nuclkeofihe potential has the form [3]

(Vs (Xe X5)) = / s %ol a sV (0. X2) da ). @)
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In addition, the nucleons interact via stochastic elastic and inelastic NN collisions.
principle, our approach to finding the fragments is independent of the algorithm wh
generates the phase space coordinates. Therefore, QMD may be replaced by any
model (like the simple molecular dynamics model [6], the Boltzmann—Uhling—Uhlenbe
model, etc. [12] which is able to generate the phase space coordinates of the particles
to its n-body nature, the QMD model is more appropriate to study the fragment format
in heavy ion collisions than one body models.

(i) A survey of heavy ion reaction.During the simulation of the reaction, we store the
phase space coordinates of all nucleons at several time steps. As the QMD model simt
the time evolution of nucleons, the stored phase space distribution is that of nucleons
Our basic assumption is that in nature that configuration is realized which gives the lar
binding energy. Therefore, a method has to be adopted to group the nucleons infree nuc
and fragments. The nucleons within a fragment will be bound by some binding energy
a very simple model, one could consider the nucleons being a part of the same fragme
their centroids are closer than some spatial distafgeThis model is called the minimum
spanning tree (MST) method [3]. One generally takesrzax < 4. By definition, this
method cannot address the fragment distribution during the violent phase of the reac
where whole nuclear matter is compressed and is confined to a few fermis. The MST me
at this time will give one single large fragment. More disturbing, the fragments detectec
the MST method can contain nucleons with very large relative momenta. These fragm
will be unstable and will decay after a while by fissioning or by emitting nucleons. -
improve the model, a cut in momentum space has been also suggested recently by o
us and collaborators [7]. This cut (which limits the maximal allowed relative momentu
of two nucleons in the same fragment) is quite effective in central collisions where mos
the fragments are created during a reaction, but has no effect on the fragment distribt
in peripheral collisions where the fragments are produced due to the decay of the spec
matter.

If one combines the cuts in momentum and in coordinate space to a binding energy
one sees that several groups of nucleons are indeed not fragments, but a group of unt
nucleons which are close in spatial space. One has to follow the reaction for a long t
until this group of nucleons decays in light and heavy fragments which are well separ:
in the coordinate space and can be detected with the standard MST algorithm. The cr
time is generally assumed to be about 300 fm/c.

To give the reader a clearer picture, we simulated the reaction Au-Au at 600 MeV/n
and at impact parameters o3 and 8 fm, respectively, and display some key quantitie
in Fig. 1. The solid and dotted lines represent the reaction at 8 and 3 fm, respectively.
first row shows the evolution of mean density and of the collisions as a function of time.
expected, a higher density and collision number can be seen in central collisions comp
to peripheral collisions. One also notices that the high reaction rate terminates at a
40-60 fm/c. Afterwards, we observe only collisions of nucleons in the same fragment.
second row shows the evolution of spectator (filled circle) and participant (filled triang
nucleons. A participant nucleon is defined as a nucleon which has undergone at leas
collision. One sees that in central collisions 99% of nucleons have experienced a colli:
until 40 fm/c. As a result the directed transverse flow saturates as early as 40—60 fi
Figure 1e displays the evolution of the size of the largest fragm&ft detected by the
normal MST method withy.x= 4 fm. We see one big fragment (consisting of 394 nucleon:
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FIG. 1. Evolution of Au-Au collisons at incident energy of 600 MeV/ nucl. using a soft equation of stat
The results ab=3 and 8 fm are displayed, respectively, by dotted and solid lines. (a) The mean density
(b) the rate of collision. (c) The evolution of the spectators (filled circle) and the participants (filled triang|
(d) The time evolution of the transverse flow of the nucleons. Here, we do not consider the formation of fragm
The evolutions of the largest ma#g'® formed within MST and MST with binding energy check (M3 &re
displayed in (e) and (f), respectively.

at the time when the density is high. After about 120 fm/c we are able to find the “stak
fragment, which still decreases in size due to evaporation. Is this realistic identifica
of the largest fragment? To answer this question, we applied a binding energy cut or
fragments detected in the MST method. We first analyze the fragments with the M
method and then pass all the fragments (with ma3} through an energy filter which
recognizes a fragment only if it has at least a binding energy of 4 MeV/nucl. Otherwis
considers the MST fragment as a set of free nucleons. This approach is labeled’agrMS’
both central and peripheral collisions, the largest fragment detected in MST is not a bc
fragment at intermediate times. One gets properly bound fragments after about 120
when the emission of nucleons has lowered the binding energy. One should keep in |
that in peripheral collisions, one has two big (spectator) fragments and a fireball at
mid-rapidity region without a fragment.

(i) Simulated annealing clusterization algorithm (SACADur new approach can be
summarized as follows. We assume that:

(1) The nucleons from target and projectile are grouped into fragments (of any s
and into free nucleons.
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(2) Though the nucleons inside a fragment can interact with each other, they do
interact with the nucleons from other fragments or free nucleons.

(3) That pattern of nucleons and fragments is realized in nature which gives the higl
binding energy.

To avoid that at intermediate times too many fragments are assumed (which finally bi
apart), we employ in addition a binding energy check. In order to form a fragment, |
considered group of nucleons has to have a minimal binding energy given by

Nf Nf
1
¢= ; \/(pa - P'c\‘nfw)2+m§ — My + Eﬂgv‘xﬁ(xo"xﬁ) < Lpex NT, (5)

with Lpe=—4.0 MeV if N > 3 andL,e = 0 otherwise. In this equatiol ' is the number
of nucleons in a fragment arfe{! is the center-of-mass momentum of the fragment. A
the beginning of the reaction the phase space is very densely populated and the algo
is not very effective to find the most bound configuration because of the formation of v
loosely bound fragments. Once such a loosely bound fragment is formed it takes a
long time until it disintegrates into a more bound configuration. To avoid being stuck it
local minimum a binding energy criteria is very effective. In addition we made sure tt
these loosely bound fragments never develop into real fragments by checking the futu
the nucleons they contain. After the violent phase of the reaction, after 60 fm/c, the bi
ing energy criteria do not play a role anymore because there all fragments have a bin
energy which is larger. The problem is that we have to find the most bound configt
tion among a huge number of possible patterns (composed of nucleons and fragme
In order to cope with this complicated problem, we employ the simulated annealing te
nigue and hence this algorithm is dubbed the “simulated annealing clusterization algori
(SACA)”

One is tempted to start the search for the most bound cluster configuration by an iter:
minimization method (also known as neighborhood search or local search). In this met
starting from a given configuration a new one is constructed. The new configuratiot
accepted only if it lowers the binding energy. The drawback of this procedure is tha
may terminate at a local minimum. To improve this limitation, several modifications can
imagined [13]:

1. To execute the algorithm for a large number of the initial configurations. This w
finally allow us to reach the global minimum. This is very time consuming.

2. To use a algorithm which can jump over local minima and hence one can reach
global minima. This clearly depends strongly on the problem. Therefore its applications
limited.

3. To generalize the iterative method so that the transitions which yields a hig
binding energy are always accepted. In addition, the transitions which yield a lower bind
energy are also accepted with a certain probability. This algorithm is known as the simul:
annealing method [13]. Its name is based on the fact that this algorithm is akin to the
used for cooling the solids. The simulated annealing method is a sequence of Metroy
algorithms [14] with decreasing control parameterThe control parametef# can be
interpreted as a “temperature.” For each Metropolis algorithm at a given temperature
perform a sequence of steps until the binding energy does not change anymore. Eact
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is executed as follows:

1. Given some initiaky with energy¢,, a new configurationp with energy¢, is
generated in the neighborhoodwfusing a Monte Carlo procedure.

2. Letthe energy difference betweg¢nandy be A; =¢, — &y.

3. If A¢ is negative, the new configuration is always accepted\dfis positive,
it is accepted with a probability exp A¢/9). At the start, the control parametéris
taken to be large enough so that most all attempted transitions are accepted. This
overcome any kind of the local minima. After the binding energy remains constan
gradual decrease in the control parametdas made and the Metropolis algorithm is re-
peated.

Note that there is no change in the coordinates of the nucleons. One should also not
this method guarantees that in the limit of infinite steps the global minimum is reach
Evidence that one reaches the ground state can be provided by obtaining the same frag
pattern for different starting configurations.

To start with, a random configuratiah (which consists of fragments and free nucleons
is chosen. The total energy associated withonfiguration is given by

N, N,

¢y = Z \/(pa — PE’F)Z+ m2 — m +%ZVa5(Xa,X5)

a=1 BFa 1

N, N,

+ Z \/(pa_pt':\‘r?>2+m§—ma+;i:vaﬁ(xa,Xﬁ)

a=1 BFa

v

f f

N N,

n 2 1
+) \/(pa—PCN’E‘) +MZ — M+ 5 ) Vo (Ko X)
a=1

B#a

12

No Na
n 2 1 n
+Z \/(pa—P‘,’\‘?) +m§—ma+§ZVa,s(xa,x,g)

a=1 BFa n

Here N;I is the number of nucleons in a fragmeth‘f\I”f1 is the center of mass momentum
M

of the fragmenjx, andV,s (X, Xg) is the interaction energy between nuclearendg in a
given fragmentc. Note that the total energy is the sum of the energies of individual fragme
in their respective center of mass system. Therefgyeliffers from the (conserved) total
energy of the system because (i) the kinetic energies of fragments are calculated in
center of masses and (ii) the interactions between fragments/free nucleons are negls
At present a simple static interaction is implemented, but one can use the algorithrr
arbitrary interactions.

A new configuration is generated using the Monte Carlo procedure by either (a) tre
ferring a nucleon from some randomly chosen fragment to another fragment, (b) setti
nucleon of a fragment free, or (c) absorbing a free nucleon into a fragment. The probak
to come from the old to the new configuration equals the probability to come from |
new to the old one. Hence micro reversibility is guaranteed. Let the new configugatio
be generated by transferring a nucleon from fragmentfragmentu. Then the energy of
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new configuratiory is given by

NS N,

2 1<
_ _ pcm 2 _ =
e —Z \/(pa Ple) + ms ma—i—zZVaﬁ(xa,x,g)
a=1 B#a 1
NS-1 5 1 NS -1
_ pctm 2 _ -
+ 3 \/(pa PN,,ffl) + M2 =My + 5 V(X Xp)
a=1 BFa v
NS +1 5 Nf+1
_ cm 2 -
+ \/(pa PN,{+1) +m —m, + 2 Z Vg (Xes Xp)
a=1 BFa u
NS > 1 NS
_ pm 2 _ =
+ O;- \/(pa Pan) + ma m, + Zﬂévaﬂ(xaaxﬂ)

n

Note that in this procedure, the individual energies of all fragments except for the do
fragment(v) and the receptor fragmeiikt) remain the same. The change in the energ
from ¢ — ¢ is given by

AL =8 — &y (6)

Between the Metropolis algorithms, we cool the system by decreasing the control par
eter¢. A decrease in the temperature means that we narrow the energy difference w
is accepted in a Metropolis step. After many Metropolis steps, we should arrive at a m
mum, i.e., the most bound configuration. The problem is, however, that we usually ar
at a local minimum only. Between the local minimum, we find huge maxima. Let us gi
an example. Assume we have two fragments, but the most bound configuration woul
one single fragment which combines both. Now each exchange of a single nucleon re
the binding energy and only the exchange of all nucleons at the same time lowers the
binding energy. This effect is well known in chemistry, where it is called activation energ
In order to avoid being stuck in a local minimum, we add, therefore, a second simulz
annealing algorithm. At the end of the first algorithm we are left with free nucleons a
fragments. These are the entities which are transfered in the second algorithm. This v
that the nucleons which are in a given fragment at the end of the first algorithm ren
together. The fragments and single free nucleons can get combined in all different w
but a fragment cannot be disintegrated into the constituents it had at the end of the
algorithm. This second stage of minimization is called the fragment exchange proced
It is capable of overcoming any local minimum.

The total energy associated with any configuratioduring the second stage of iterations
is given by

Ns, Ns;
ty = ; \/(pa—P&r;)Z—l—mg—ma-F;;#Vaﬂ(xavxﬂ)

1

Ns, Ns,

4o Z \/(pa_pﬁln;)2+m§—ma+;ZVa,s(xa,Xﬁ)

a=1 BFa



ALGORITHM FOR MULTIFRAGMENTATION 253

NS“ Nsp.
2 1
+ Z \/<pa - P,C\,rgl) +m2 —m, + > ZVaﬂ(Xa,Xﬁ)
a=1 B#a
)z
NS’] 1 NS]
+0y \/(pa—Pf\,m) +m2—m, + = Zvaﬁ(xa,xﬁ)
a=1 ﬁ;éa

n

HereNs, = > ; 51 NIS is the number of nucleons in a super-fragmgnt N'Sﬂ is the number
of nucleons in théth fragment contained in the super- frangntansti is the number of
pre-fragments contained in the super-fragn&ni hePCm is the center of mass momentum
of the super fragmers, andV, (X, Xg) is the interaction energy between nuclearand
B in a given super-fragment. Note that now the particlateracts with its fellow nucleons
in the same pre-fragment and also with the nucleons of other pre-fragments which
contained in a new given super-fragméht

Now the new configuration is generated using a Monte Carlo procedure by either

(a) transferring a pre-fragment from some randomly chosen super-fragment to anc
super-fragment or by

(b) setting a pre-fragment free or (c) absorbing a single isolated pre-fragment ini
super-fragment. Let us suppose that a new configuraiids generated by transferring a
pre-fragment i (with masBliS,) from super-fragment to super-fragment. The associated
energy of new configuratio® reads

Ng; 1 s
Lo = Z \/(Da— ﬁ{g) +m2—my + = ZVaﬁ(Xa,Xﬁ)

a=1 /375 1

Ns, —N& 1N5—N§

o Y \/(p L N.) M —m, D Vop (X Xg)

a=1 B )
Ns, +N¢ 5 lN&+N§
+9 > \/(pa—Pﬁ{;‘ﬁNi&) FME = Me S D Vap (e Xp)
a=1 B .

Ne, 1 s

RESY \/(pa—Pf\,m) +m2—m, + = Zvaﬂ(xa,xﬁ)
a=1 5¢a

n

The only difference between the particle and the fragment exchange procedure occul
the bound nucleons. Now the bound nucleons cannot change their identity either by b
absorbed or by becoming free. They will remain bound in a pre-fragment. The pre-fragn
itself can change its identity by either getting transferred to a new super-fragment, or b
set free. As in the first stage, we calculate the energy difference between the new an
old configurationsA¢ and the Metropolis procedure is continued until the most favore
configuration is obtained.

In summary, the actual procedure is as follows. We first simulate the nucleus—nuc
collision using the QMD model and store the phase-space coordinates of all nucleot
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several time steps. At each stored time step, we apply the SACA to find the most bo
configuration which consists of nucleons and fragments (of any size). For a faster c
vergence of the algorithm, any cluster decomposition irrespective of whether it fulfi
the binding energy check (Eq. (5)) or not is considered. Therefore, it is likely that s
eral clusters may fail to fulfil Eq. (5). At the end of the algorithm when the most bour
configuration is found, we check the binding energy (Eq. (5)) of each super-fragment
plicitly and mark all super-fragments violating this condition. The nucleons belonging
an ‘inhibited’ (marked) cluster are further on treated as free nucleons. The minimiz
procedure of the simulated annealing mechanism is invoked again until a configuratic
found where all fragments fulfill Eq. (5). The heavy fragments are usually more bound tl
the lighter ones. We have carried out a detailed analysis and found that it is always the
fragments (with masses 3 or 4) which at the end of the iterations are unbound or loo
bound.

In the following, we discuss the numerical realization of the algorithm and presen
detailed analysis of the influence of different parameters used in the simulated anne:
method.

I1l. NUMERICAL REALIZATION

The simulated annealing algorithm has several parametersto be determined: the initia
the final value of the control paramet&rthe number of Metropolis steps to be executed &
a given value of control parameter (i.e., length of Markov chain), the decrease of the cor
parameter, and the termination of the algorithm. This set of parameters is also referred
the cooling schedule in the literature [13]. One needs to choose the following parame
explicitly:

1. Theinitial value of the control parametgt This will be referred to as temperature.
2. The final value of the control parameter (i.e., the termination procedure).

3. The length of the Markov chaill.p.

4. Arule to fix the decrement in the control parameter

Following [13], we use a so-called simple cooling scheme and present the analysis of
extensive tests made for the collisions of Au-Au at 600 MeV/nucl. and atanimpact param
of 8 fm. We have also analyzed the results for the collisions of Pb-Pb (central) and Nb.
(central and peripheral). The results of our analysis are independent of the masses ¢
colliding nuclei and also of the impact parameter. For our analysis we choose a conserv
set of the above parameters and then try to find an optimized set of the parameters w
yields the shortest computational time. We use the following set of parameters if not st
otherwise.

The initial temperatur@; is taken to be 4 MeV. The length of the Markov chain is takel
to be 70y, n being the number of entities at the start of the minimization. After each Mark
chain &70n), the temperature is decreased using a simple law,

iy =0 v,

with ¢ =0.95. Finally, the algorithm is terminated if there is no change in the bindir
energy for a large number of iterations@0n). The details of each of these parameters wil
be presented the following paragraphs.
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FIG.2. The heaviest fragmem®™@X the emitted nucleons, the multiplicity of fragments with mass 3, and
the total energy associated with the configuration are displayed as a function of the cell number. Here the r
at 0, 40, and 200 fm/c are represented, respectively, by filled circle, open square, and filled triangle. The disp
results are for a single event generated using the QMD model.

(i) The initial configuration. We have to choose a random initial distribution to evok
the simulated annealing minimization. In our procedure, we distribute the nucleons (of
two colliding nuclei) into a few cells. The transfer of nucleons is allowed among the
cells. Naturally, the final outcome should be independent of the number of cells we cho
In Fig. 2, we present the outcome of a single QMD event when exposed to SACA wit
different number of initial cells. The displayed reaction is of Au-Au at 600 MeV/nucl. ar
impact parameter of 8 fm. Here we vary the number of cells between 2 and 394 (that is
treating each nucleon as a free particle). We see that the variation in the cell number
not affect the final fragment distribution. At 0 fm/c, the simulated annealing method fir
2 nuclei (i.e., the projectile and target) which shows the validity of the annealing meth
One also notices that the binding energy of the system remains constant between 4
200 fm/c. In other words, the most bound configuration found in SACA at 40 and 200 fr
is approximately the same.

In Fig. 3, we display the evolution of most bound configuration using the two extrem
2 cells and all particles free at 0, 40, 120, and 200 fm/c, respectively. Note that the |
density phase is reached around 40 fm/c. Between 120 and 200 fm/c, one should not e
much change as the reaction is already finished and there is only some rearrangement
nucleons in the fragments. In case of 2 cells (2 initial clusters) the algorithm first breaks e
of the clusters into large number of free nucleons (because free nucleons have zero er
and some light fragments. After several hundred-thousand iterations, it starts rearrar
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FIG. 3. The evolution of the most bound configuration as a function of the iterations. Here we display
results at four times, i.e., at 0, 40, 120, and 200 fm/c, respectively. The solid and dotted lines represent the r
obtained with cells= 2 and 394, respectively.

the nucleons into bound fragments. Itis interesting to note that after some initial differen
the evolution of most bound configuration is quite the same in both cases.

As stated in the algorithm section, we choose the new configuration®) by transfer-
ring a nucleon/pre-fragment from one fragment/super-fragment to another. These fragrn
are chosen by the Monte Carlo method. It would be interesting to study the effect of dif
ent Monte Carlo procedures (applied in SACA) on the fragment distribution. The differe
Monte Carlo procedures can be generated using different random numbers. In Fig. 4, we
play the fragment distribution (i.e., the largest fragmafit* the number of free nucleons
and of intermediate mass fragments IMks- 5) and the energy of the most bound con-
figuration at three different times, i.e., at 0, 40, and 200 fm/c, respectively, for the differ
iterations. We see, as it should be, an almost complete independence.

(i) The initial valued;. One of the key features of the Metropolis algorithm is that i
also accepts the transitions which increase the cost function, i.e., the energy. Therefore
initial value®; should be such that most of the attempted transitions are accepted during
iterations. In other words, epr_;/ﬁi) ~ 1. A practical way to implement the sequence
of 9¥’s is given by Johnsoet al. [15]. There the average increase in the energy over lart
number of iterationg\ ¢ is related withy; by

acceptance ratio  x = exp—AZ /%), @)
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Generally, the acceptance ragtoshould be close to 1. The choice of the valtigor the
temperature) depends very strongly on the problem at hand. It should be kept in mind
a very large value of; will lead to huge computational time whereas a very small valu
will lead to less attempts which are accepted by the Metropolis algorithm and conseque
which may lead to a wrong final distribution. In Fig. 5, we show the same reaction as repo
in Figs. 1-4, but at different values of initial temperatitreHere the other parameters are
kept unchanged. The variation&f between 1 and 500 MeV has no effect on the fragmel
distribution at 0 fm/c. We have just two gold nuclei initially. On the contrary, one can s
some differences at 40 fm/c. A very small valuedpi{<3—4 MeV) leads to a heaviek™®
(95) compared to the averagé"®(~42) and as a result fewer IMFs and nucleons ar
emitted. Similar conclusions can be drawn at 200 fm/c. A very low valug apparently
freezes the initial configuration. The results are more stablé;for3 MeV. Therefore, we
choosey; =5 MeV.

In Fig. 6, we display the evolution of the most bound configuration in the Au-Au reactio
using ¥ =5MeV and 500 MeV. We see that when one iterates the reaction with ve
large initial temperature=£500 MeV), almost all attempted transitions are accepted in tt
Metropolis algorithm. With a moderate value of the temperattyre 5 MeV, only some
selected configurations are accepted. The minimization of the energywitts00 MeV
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FIG. 7. Same as Fig. 5, but as a function of the length of the Markov chijn

results in the vibration around the same fragments for very long time. An (unnecess
large value of%; does not help to establish an early equilibrium. On the contrary, one ne:
huge computation time (in terms of iterations) to find the most bound configuration.
same can be achieved with moderate valug;ef 5 MeV with far less costs.

(i) The length of the Markov chain, M. Here we fix the control parametér and
execute the algorithm for a fixed number of Metropolis steps. We construct a sequenc
fragment configurations @ {y, ¢, ¥, ..., ®}. One should note that here we have an initia
configuratiomy and the new configuratiop(=y + 1) is generated by a random matrix.
Thus, the number of iterations, and hence the length of Markov chain, should be long enc
to ensure an equilibrium. In Fig. 7, we show the results with Markov chains of differe
length. The length of the Markov chains displayed in the units of the total number of the
nucleons (pre-fragments) present at the beginning of the minimization. After abgptitd0
results are quite stable. For smaller valueg,ahere are fluctuations in the results and, ir
addition, SACA overestimates the size df&and underestimates consequently the IMI
production. We fix the length of the Markov chainjat 40. The effect of different M,’s on
the evolution of the most bound configuration is shown in Fig. 8 where the evolution of
fragment’s multiplicity is plotted as a function of the iterations for two values of Markov
chains, i.e., foMc, =407 and 450y, respectively. Note that the number of iterations equa
n times the number of temperature steps. We see that the initial evolution is quite the sar
both cases, but a smaller valueM§y, needs less iterations than a longer one to arrive at tf
same final value. This is easy to understand. The main aim of iterating over a large nur
of iterations with the samé is to establish the quasi-equilibrium. Once an equilibrium i
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FIG. 8. Same as Fig. 3, but witM., =40y and 450, respectively.

established, there will be no further improvements at the santteerefore, a smaller value
of M¢n leads to the same result as that with the lardést

(iv) Decrement in the control parameterThe minimization is started with a relatively
large temperaturé;. Then the temperature is decreased in steps after a quasi-equilibri
is established for each temperature. Apparently, a larger decrement in the temperature
lead the defect to be frozen, i.e., any configuration which may or may not be the
bound can freeze, whereas a very small decrement will need huge computational time
decrement should be in such a way that the length of the Markov dhgjiis as small as
possible and thus, after a new change of control paranietiee quasi-equilibrium should be
re-established as soon as possible. We here follow the simple rule for the decrement,fac

Yiy1 =0 - 0. 9)

The value ofs varies in the literature between 0.5 and 0.95 [13, 15-17]. The effect
different decrement factors is displayed in Fig. 9. Here all other parameters are kept tt
same as discussed at the beginning. One can see that a very small valoxeoéstimates
the size ofA™** and underestimates the IMF production. We fix the value taf 0.85. The
comparison of two simulations resulting from the decrement fagter0.85 and 0.89 is
displayed in Fig. 10. Here we see that the two different values give the same cooling re
but for the larger value of many more iterations are necessary.

(v) The final valuey¢. The termination procedure used in the literature varies frot
problem to problem and also from author to author. We fix the termination by two differe
controls.
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FIG. 11. Same as Fig. 5, but as a function of termination lergii.

1. Either we stop the calculations if the control paramétéas reached a very small
value where no further transition can be expected. For the present calculation, we
¥1=10"1"MeV.

2. Or we terminate the algorithm if there is no change in the configuration over a la
number of attempted iterations. Following the rule used to fix the length of the Mark
chain, we choose the length for terminatl@sy, in terms ofy which represents the number
of iterations in the units oM¢. In Fig. 11, we display the effect of the variationljgm, on
the fragment distribution. We find that different termination lengths do not affect the resu
The effect of thém on the evolution of the most bound configurations is shown in Fig. 1
where the evolution as a function of iterations is displayed for two valubg.qfi.e., for
lierm=5n and 120y, respectively. The different termination values have a very small effe
on the fragment structure. Therefore, welfix, to 357.

In the above paragraphs, we have discussed in detail the influence of different choice
the parameters which determine the simulated annealing method. One should note that
these parameters are chosen, the simulated annealing method is completely determine
it is a complete self-iterative method.

In further discussion, the set with conservative parameters (i.e., dyith500 MeV,
Mch =4507, 0 = 0.98 and;m= 120y) is called $whereas the set with the most econom:-
ical parameters (i.e., with =5 MeV, M, =40, o = 0.85 and;m= 35n) is called 3.

The crucial test of the algorithm is its application to a single nucleus in its ground state
principle one should get a single nucleus at the end. For small nuclei (up to mass 50 amt
algorithm finds always the ground state. For heavier nuclei the result is different. Usu:
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FIG. 12. Same as Fig. 3, but witherm= 357 and 126;.

the algorithm gets stuck in a local minimum which consists of a few heavy fragments
a few single nucleons. The algorithm does not find the global minimum, which is of cou
the single nucleus because it is separated from the local minimum by a large pote
barrier. This situation is similar to chemical reactions which need an activation energy.
probability of surmounting that barrier is very small but finite and hence the system v
finally find its way to the true ground state but this will take much too long.

Therefore we add a second stage to the algorithm in which nucleons are transfe
collectively. We consider the nucleons and fragments we obtain at the end of first stac
those entities which can be transferred. By this fragments exchange procedure we ¢
overcome the local minima and we find a single nucleus as the most bound configuratio
Fig. 13, we show the evolution of the fragments as a function of the iterations for differ
single nuclei”°Ne, “°Ca, ®3Nb, and?°®Pb, respectively, using.$ Starting points are the
(ground) state nuclei as generated by the QMD. In all cases, the SACA finds the sil
nucleus at the end of the iterations as it should. One also notices that the lighter nuclei
less iterations to find the most bound configuration. We fi¥®000, 12,000, 62,000, and
280,000 iterations are necessary to find the ground stat@Nar, “°Ca, **Nb, and?°®Pb,
respectively. One also notices that the increase in the number of necessary iterations
a linear function of the masses of nuclei. The energy of the configurations is displa
in Fig. 14. We notice that one has a positive energy at the beginning which is decre:
by breaking the cells into a large number of nucleons/fragments. After a large numbe
iterations, one finally reaches the most bound configuration.

In Fig. 15, we display the multiplicity (averaged over 20 events) of different fragmer
obtained usindy and &, respectively. Here the Au-Au collision is carried out at impac



264 PURI AND AICHELIN

20 T T T 20 AL B B L |

20
Ne

—_
w
T
L

Multiplicity
=5
T
1

0 n | 1l n n 0 | PR sl
102 510°2 51002 5100 10'z s10°2 s510°:2 s10°:

80 T T 200 e T

Pb

208

150

100

Multiplicity
=

20 50

| 1 0 ) | PRTTIT TR R TTIT B W
2 51002 s10'2 s 10°2 5102 s10%2 510°2 s
Total Iterations Total Iterations

FIG. 13. Same as Fig. 3, but the evolution of single nuclei Ne, Ca, Nb, and Pb, respectively.

150 T AL HELRRALA 400 LHELRARLLL B L L S ALY |

40
Ca

Energy (MeV)
(=1
(=1

15| 4 200 -
-150 L ! 400 Ll
1002 51072 51002 s10°  10'2 s10°2 510°z s10°2
250 e r T T
500 4
0 A/\«,MI” “% 250 1
~ ’ ]
< 250 4 250 ]
< -500 4
g-soo - 4 70 l
5l -1000 1
L -1250 §
O 93 208
Nb 150l Pb ,
-1000 el el e <1750 E il vl il i
1002 51002 s10° 2 s 10°2 510°2 s10°2 510°2 5
Total Iterations Total Iterations

FIG. 14. Same as Fig. 13, but the energy of the system as a function of the iterations.



ALGORITHM FOR MULTIFRAGMENTATION 265

400 T T T M T T
00 Au - Au, 600 MeV/ nucleon, b =8 fm ]
]
& 200 i
< [}
100 - 1
g ¢ 9 9 @ @ @ @9
0 f f t f
5 .
2 200 G 8 9 9 9 ¥ 9§ 9
©
E 100F g q
0 f t f t
v o gl
Al 5 O Se _
<
B 10 . .
= " B o8 8 9 o |
0 1 1 1 1
0 40 80 120 160 200

Time (fm/ ¢)

FIG. 15. The time evolution of the Au-Au system at 600 MeV/nucl. and at an impact parameter of 8 fm us
a soft equation of the state. Here we display the results which are averaged over 20 events. The results ok
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parameter of 8 fm. We see that both sets of parameters give a similar evolution of
reaction. One should note that the minimization with needs much less computing time
as compared t§. Our algorithm is able to detect the fragment distribution as early as 50-
fm/c. From Fig. 1, one notices that the density is maximum at this time. This very ec
identification of fragments in SACA is very promising because it means that the fragme
may give insight into hot and dense nuclear matter.

The annealing algorithm can be made faster if some pre-information is fed into
algorithm. Naturally, the nucleons which are very far away in spatial or in momentum sp
will not lower the energy if one combines them as a fragment. We applied a cut in spatial
in momentum space to sort out those distant nucleons. We took a minimal spatial dist:
between two nucleons of 10 fm and a relative momentum of 200 MeV/c. In other wor
we first break the whole system into fragments using these conditions and each of t
fragments are then subjected to SACA. We found that the results are the same as befo
the algorithm is about 10 times faster.

IV. SUMMARY

Summarizing, based on the simulated annealing method, we have presented the d
of a new algorithm developed to study multifragmentation of heavy ion collisions. \
have carried out an extensive survey of the different parameters which are crucial
the success of the method. Based on our calculations, a set of parameters is sugges
the algorithm which makes the algorithm very fast and accurate. This algorithm can de
the fragments as early as 40—60 fm/c, i.e., at a time when the density is relatively high
the interactions between fragments are still going on. This allows us to study the pro
of fragment formation in detail. As seen, the fragment distribution is by far not the sam
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this early time as compared to 200-1000 fm/c. But there are strong correlations betv
the fragment patterns at both times. Detailed investigations have shown that between 6
200 fm/c small fragments recombine to a large one thus lowering the fragment multiplic
A first physical interpretation of this observation was given [10]. A systematic study of t
fragment production as a function of beam energy and impact parameter will be prese
elsewhere [20]. Furthermore this algorithm makes it possible to apply the full in-medit
G-matrix approach [18] to study the multifragmentation which was not possible due to
emission of nucleons after 70—80 fm/c [19]. The algorithm is very general and may se
for every problem in which the most bound configuration has to be found.
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